217 research outputs found

    Breathers in oscillator chains with Hertzian interactions

    Full text link
    We prove nonexistence of breathers (spatially localized and time-periodic oscillations) for a class of Fermi-Pasta-Ulam lattices representing an uncompressed chain of beads interacting via Hertz's contact forces. We then consider the setting in which an additional on-site potential is present, motivated by the Newton's cradle under the effect of gravity. Using both direct numerical computations and a simplified asymptotic model of the oscillator chain, the so-called discrete p-Schr\"odinger (DpS) equation, we show the existence of discrete breathers and study their spectral properties and mobility. Due to the fully nonlinear character of Hertzian interactions, breathers are found to be much more localized than in classical nonlinear lattices and their motion occurs with less dispersion. In addition, we study numerically the excitation of a traveling breather after an impact at one end of a semi-infinite chain. This case is well described by the DpS equation when local oscillations are faster than binary collisions, a situation occuring e.g. in chains of stiff cantilevers decorated by spherical beads. When a hard anharmonic part is added to the local potential, a new type of traveling breather emerges, showing spontaneous direction-reversing in a spatially homogeneous system. Finally, the interaction of a moving breather with a point defect is also considered in the cradle system. Almost total breather reflections are observed at sufficiently high defect sizes, suggesting potential applications of such systems as shock wave reflectors

    The Krein Matrix: General Theory and Concrete Applications in Atomic Bose-Einstein Condensates

    Full text link
    When finding the nonzero eigenvalues for Hamiltonian eigenvalue problems it is especially important to locate not only the unstable eigenvalues (i.e., those with positive real part), but also those which are purely imaginary but have negative Krein signature. These latter eigenvalues have the property that they can become unstable upon collision with other purely imaginary eigenvalues, i.e., they are a necessary building block in the mechanism leading to the so-called Hamiltonian-Hopf bifurcation. In this paper we review a general theory for constructing a meromorphic matrix-valued function, the so-called Krein matrix, which has the property of not only locating the unstable eigenvalues, but also those with negative Krein signature. These eigenvalues are realized as zeros of the determinant. The resulting finite dimensional problem obtained by setting the determinant of the Krein matrix to zero presents a valuable simplification. In this paper the usefulness of the technique is illustrated through prototypical examples of spectral analysis of states that have arisen in recent experimental and theoretical studies of atomic Bose-Einstein condensates. In particular, we consider one-dimensional settings (the cigar trap) possessing real-valued multi-dark-soliton solutions, and two-dimensional settings (the pancake trap) admitting complex multi-vortex stationary waveforms.Comment: 26 pages, 16 figures (revised version on April 18 2013

    Dark solitons in external potentials

    Full text link
    We consider the persistence and stability of dark solitons in the Gross-Pitaevskii (GP) equation with a small decaying potential. We show that families of black solitons with zero speed originate from extremal points of an appropriately defined effective potential and persist for sufficiently small strength of the potential. We prove that families at the maximum points are generally unstable with exactly one real positive eigenvalue, while families at the minimum points are generally unstable with exactly two complex-conjugated eigenvalues with positive real part. This mechanism of destabilization of the black soliton is confirmed in numerical approximations of eigenvalues of the linearized GP equation and full numerical simulations of the nonlinear GP equation with cubic nonlinearity. We illustrate the monotonic instability associated with the real eigenvalues and the oscillatory instability associated with the complex eigenvalues and compare the numerical results of evolution of a dark soliton with the predictions of Newton's particle law for its position.Comment: 39 pages, 10 figure
    • …
    corecore